Synthesis of η^5 -Cyclopentadienyl- and η^8 -Cyclo-octatetraenyl-titanacarboranes of Titanium-(II), -(III), and-(IV)

By Chris G. Salentine and M. Frederick Hawthorne*

(Department of Chemistry, University of California, Los Angeles, California 90024)

Summary Treatment of the organometallic chlorides $LTiCl_x$ (L = C₅H₅, x = 2 or 3; L = C₈H₈, x = 1) with the sodium salts of carborane dianions, $Na_2C_2B_nH_{n+2}$, gives the first mixed-ligand titanacarboranes, $[C_5H_5TiC_2B_{10}H_{12}]^-$, $[C_8H_8TiC_2B_nH_{n+2}]^-$, and $C_8H_8TiC_2B_nH_{n+2}$ (n = 9 or 10) with formal metal oxidation states of +2, +3, and +4, respectively.

WE recently described¹ the first organometallic complexes of the group IV and V transition metals which incorporate carboranes as π -bonded ligands. We now report the first mixed-ligand metallocarboranes of titanium with the metal in a variety of formal oxidation states.

Addition of $C_5H_5TiCl_x$ (x = 2 or 3) to a tetrahydrofuran (THF) solution of $Na_2C_2B_{10}H_{12}$ under argon gave a green solution presumably containing the neutral species $C_5H_5TiC_2B_{10}H_{12}$, or a solvated analogue. Treatment of the solution with zinc dust resulted in a colour change to red and [Et₄N][4-(η^5 - C_5H_5)-4,1,6-TiC_2B_{10}H_{12}] (I) was isolated as described previously;^{1a} 60 MHz ¹H n.m.r. spectrum in CD₃CN: τ 4·33 (5H, s, C₅H₅) and 2·36 (2H, s br., carborane C-H), 80·5 MHz ¹¹B n.m.r. spectrum: $-14\cdot0$, $-0\cdot6$, $+0\cdot1$, $+13\cdot3$, and $+26\cdot0$ p.p.m., doublets of relative area 1:3:3:2:1, relative to Et₂O·BF₃.⁺ The n.m.r. data are consistent with a fluxional complex resulting from incorporation of the C₂B₁₀H₁₂ carborane ligand.^{1,2} Cyclic

voltammetry[‡] showed an irreversible oxidation at $E_{p/3} = +0.51$ V and a reversible reduction at -1.78 V. The red

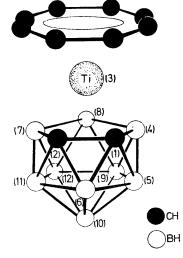


FIGURE. The proposed structure of (III).

crystalline (I) is stable for a short period in the air and is unreactive toward 1 atm of N_2 or CO in solution.

† Satisfactory elemental analyses were obtained for all the new metallocarboranes.

 \pm MeCN solvent, 0·1 M Et₄N+PF₆-, Pt button electrode. Potentials are measured with reference to S.C.E.

The reaction of $(C_8H_8TiCl)_2$ with $Na_2C_2B_9H_{11}$ in THF yielded a green solution from which air-sensitive paramagnetic yellow-green crystals of $[Et_4N][3-(\eta^8-C_8H_8)-$ 3,1,2-TiC₂B₂H₁₁ (II) were isolated. A reversible oxidation was observed for (II) at -0.91 V. Treatment of (II) with H₂O₂ gave the greenish-brown, crystalline, neutral species $3\text{-}(\eta^8\text{-}C_8H_8)\text{-}3,1,2\text{-}\mathrm{Ti}C_2B_9H_{11}$ (III), ¹H n.m.r. spectrum in $(CD_3)_2CO: \tau 2.28$ (s, C_8H_8) and 6.72 (s br., carborane C-H) of relative areas 4:1; ¹¹B n.m.r. spectrum: doublets of relative areas 1:2:2:2:2 at -8.9, +5.1, +5.9, +15.8, and +17.4 p.p.m. The cyclic voltammogram^{\ddagger} of (III) showed a reversible reduction at -0.87 V. I.r. spectra of (II) and (III) were consistent with η^{8} -C $_{8}H_{8}$ ligands,³ exhibiting absorptions at 915m, 835w, 882w, 780m, and 765s; and 920m, 810m, 793m, 772m, and 746vs cm⁻¹, respectively. The proposed structure for (III) is shown in the Figure,

and is similar to that crystallographically found⁴ for $C_8H_8TiC_5H_5$. These complexes represent the first metallocarboranes containing the C8H8 ligand; therefore it is pertinent to note that (III) is air stable to 300 °C and can be purified by liquid chromatography on silica.

The homologous metallocarboranes $[4-(\eta^8-C_8H_8)-4,1,6 TiC_{2}B_{10}H_{12}$ ⁿ⁻ (n = 0 or 1) have also been prepared; the formal Ti^{IV} complex exhibited a reversible reduction at -0.55 V. A comparison of electrochemical data for all available $B_{9}-B_{10}$ homologues^{2,5} consistently shows lower reduction potentials (which are primarily metal in character⁷) for the $C_2B_{10}H_{12}$ complexes.

This work was supported in part by the Office of Naval Research.

(Received, 28th July 1975; Com. 861.)

¹ (a) C. G. Salentine and M. F. Hawthorne, J. Amer. Chem. Soc., 1975, 97, 426; (b) F. Y. Lo, C. E. Strouse, K. P. Callahan, C. B.

- ¹ (a) C. G. Salentinie and M. F. Hawhorne, J. Amer. Chem. Soc., 1913, 97, 420, (b) F. T. Lö, C. E. Ströuse, R. T. Cananan, C. D. Knober, and M. F. Hawhorne, *ibid.*, p. 428.
 ² D. F. Dustin, G. B. Dunks, and M. F. Hawthorne, J. Amer. Chem. Soc., 1973, 95, 1109.
 ³ K. O. Hodgson, F. Mares, D. F. Starks, and A. Streitwieser, Jr., J. Amer. Chem. Soc., 1973, 95, 8650.
 ⁴ P. A. Kroon and R. B. Helmholdt, J. Organometallic Chem., 1970, 25, 451.
 ⁵ M. F. Hawthorne, D. C. Young, T. D. Andrews, D. V. Howe, R. L. Pilling, A. D. Pitts, M. Reintjes, L. F. Warren, Jr., and P. A. Wegner, J. Amer. Chem. Soc., 1968, 90, 879.
 ⁶ R. J. Wiersema and M. F. Hourthoerne, J. Amer. Chem. Soc., 1974, 96, 761.
 - ⁶ R. J. Wiersema and M. F. Hawthorne, J. Amer. Chem. Soc., 1974, 96, 761.